Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa.

Identifieur interne : 002509 ( Main/Exploration ); précédent : 002508; suivant : 002510

Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa.

Auteurs : Jian Zhang [République populaire de Chine] ; Penghui Xie ; Martin Lascoux ; Thomas R. Meagher ; Jianquan Liu

Source :

RBID : pubmed:23776666

Descripteurs français

English descriptors

Abstract

Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphratica, we conducted a deep transcriptomic analysis of P. pruinosa. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of two types of callus and desert-grown trees. De novo assembly generated 114,866 high-quality unique sequences using Solexa sequence data. Following assembly we were able to identify, with high confidence, 2859 orthologous sequence pairs between the two species. Based on the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we identified a total of 84 (2.9%) ortholog pairs exhibiting rapid evolution with signs of strong selection (Ka/Ks>1). Genes homologous to these ortholog pairs in model species are mainly involved in 'responses to stress', 'ubiquitin-dependent protein catabolic processes', and 'biological regulation'. Finally, we examined the expression patterns of candidate genes with rapid evolution in response to salt stress. Only one pair of orthologs up-regulated their expression in both species while three and four genes were found to up-regulated in P. pruinosa and in P. euphratica respectively. Our findings together suggest that the genes at the same category or network but with differentiated expressions or functions may have evolved rapidly during adaptive divergence of the two species to differentiated salty desert habitats.

DOI: 10.1371/journal.pone.0066370
PubMed: 23776666
PubMed Central: PMC3679102


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa.</title>
<author>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Ecology Group, State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Molecular Ecology Group, State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Penghui" sort="Xie, Penghui" uniqKey="Xie P" first="Penghui" last="Xie">Penghui Xie</name>
</author>
<author>
<name sortKey="Lascoux, Martin" sort="Lascoux, Martin" uniqKey="Lascoux M" first="Martin" last="Lascoux">Martin Lascoux</name>
</author>
<author>
<name sortKey="Meagher, Thomas R" sort="Meagher, Thomas R" uniqKey="Meagher T" first="Thomas R" last="Meagher">Thomas R. Meagher</name>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23776666</idno>
<idno type="pmid">23776666</idno>
<idno type="doi">10.1371/journal.pone.0066370</idno>
<idno type="pmc">PMC3679102</idno>
<idno type="wicri:Area/Main/Corpus">002560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002560</idno>
<idno type="wicri:Area/Main/Curation">002560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002560</idno>
<idno type="wicri:Area/Main/Exploration">002560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa.</title>
<author>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Ecology Group, State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Molecular Ecology Group, State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Penghui" sort="Xie, Penghui" uniqKey="Xie P" first="Penghui" last="Xie">Penghui Xie</name>
</author>
<author>
<name sortKey="Lascoux, Martin" sort="Lascoux, Martin" uniqKey="Lascoux M" first="Martin" last="Lascoux">Martin Lascoux</name>
</author>
<author>
<name sortKey="Meagher, Thomas R" sort="Meagher, Thomas R" uniqKey="Meagher T" first="Thomas R" last="Meagher">Thomas R. Meagher</name>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Adaptation, Physiological (physiology)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>RNA, Messenger (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Adaptation physiologique (génétique)</term>
<term>Adaptation physiologique (physiologie)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Expression Regulation, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Adaptation physiologique</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Expression Regulation, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Expressed Sequence Tags</term>
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphratica, we conducted a deep transcriptomic analysis of P. pruinosa. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of two types of callus and desert-grown trees. De novo assembly generated 114,866 high-quality unique sequences using Solexa sequence data. Following assembly we were able to identify, with high confidence, 2859 orthologous sequence pairs between the two species. Based on the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we identified a total of 84 (2.9%) ortholog pairs exhibiting rapid evolution with signs of strong selection (Ka/Ks>1). Genes homologous to these ortholog pairs in model species are mainly involved in 'responses to stress', 'ubiquitin-dependent protein catabolic processes', and 'biological regulation'. Finally, we examined the expression patterns of candidate genes with rapid evolution in response to salt stress. Only one pair of orthologs up-regulated their expression in both species while three and four genes were found to up-regulated in P. pruinosa and in P. euphratica respectively. Our findings together suggest that the genes at the same category or network but with differentiated expressions or functions may have evolved rapidly during adaptive divergence of the two species to differentiated salty desert habitats.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23776666</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa.</ArticleTitle>
<Pagination>
<MedlinePgn>e66370</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0066370</ELocationID>
<Abstract>
<AbstractText>Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphratica, we conducted a deep transcriptomic analysis of P. pruinosa. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of two types of callus and desert-grown trees. De novo assembly generated 114,866 high-quality unique sequences using Solexa sequence data. Following assembly we were able to identify, with high confidence, 2859 orthologous sequence pairs between the two species. Based on the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we identified a total of 84 (2.9%) ortholog pairs exhibiting rapid evolution with signs of strong selection (Ka/Ks>1). Genes homologous to these ortholog pairs in model species are mainly involved in 'responses to stress', 'ubiquitin-dependent protein catabolic processes', and 'biological regulation'. Finally, we examined the expression patterns of candidate genes with rapid evolution in response to salt stress. Only one pair of orthologs up-regulated their expression in both species while three and four genes were found to up-regulated in P. pruinosa and in P. euphratica respectively. Our findings together suggest that the genes at the same category or network but with differentiated expressions or functions may have evolved rapidly during adaptive divergence of the two species to differentiated salty desert habitats.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Molecular Ecology Group, State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Penghui</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lascoux</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meagher</LastName>
<ForeName>Thomas R</ForeName>
<Initials>TR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianquan</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23776666</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0066370</ArticleId>
<ArticleId IdType="pii">PONE-D-12-34816</ArticleId>
<ArticleId IdType="pmc">PMC3679102</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19 Suppl 1:162-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20331778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Feb;20(2):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19 Suppl 1:266-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20331785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20862491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2012 Apr;19(2):195-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22351699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22429310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2012;13(3):241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22390828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Genomics. 2011 Jun;4(2):93-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21620330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Genomics. 2011 Jun;4(2):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21620334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Jan;17(1):32-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Oct;32(2):261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12219088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 22;19(5):651-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:555-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1979 Mar 15;12(3):219-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">439147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1986 Sep;3(5):418-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3444411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1994 Sep;11(5):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7968486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1997 Dec;45(6):579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17300984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 May;99(5):787-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17531802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 8;450(7167):203-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(21):4586-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Jan;5(1):e1000262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Apr;24(4):192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jun;10(6):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19 Suppl 1:197-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20331780</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lascoux, Martin" sort="Lascoux, Martin" uniqKey="Lascoux M" first="Martin" last="Lascoux">Martin Lascoux</name>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<name sortKey="Meagher, Thomas R" sort="Meagher, Thomas R" uniqKey="Meagher T" first="Thomas R" last="Meagher">Thomas R. Meagher</name>
<name sortKey="Xie, Penghui" sort="Xie, Penghui" uniqKey="Xie P" first="Penghui" last="Xie">Penghui Xie</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23776666
   |texte=   Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23776666" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020